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In this supplementary material, we provide a detailed
overview of the model architecture and experimental set-
tings. This document includes:
• A comprehensive description of the model architecture

and the pseudo-code for computing local CL and global
CL, as presented in Section 1.

• Detailed experimental results corresponding to Figure 1a
and Table 4, as provided in Section 2.

• Detailed experimental settings for multi-class and
reconstruction-based models, as outlined in Section 3.

1. Model Architecture
We provided detailed architecture in Figure I and Python-
style pseudo-code for computing local CL and global CL in
Code 1. Specifically,
• The encoder employs a pretrained WideResNet50 [6], ex-

tracting features from the first three residual blocks, de-
noted as R1

e, R2
e, and R3

e.
• The projector employs a convolutional block with N = 4.
• The neck utilizes convolutional layers to align multi-scale

features using a 1× 1 convolution layers.
• The decoder adopts a symmetrical structure to the en-

coder, utilizing the first three residual blocks of a ran-
domly initialized WideResNet50, denoted as R1

d, R2
d, and

R3
d. Deconvolution layers with a kernel size of 2× 2 are

applied before each block to upsample the features.

2. Detailed Results
We provided specific experimental results across multiple
comparison experiments:
• Table I provides detailed results corresponding to Fig-

ure 1.(a), using various one-for-all training strategies to
enhance previously one-for-one models [2, 21] on four
datasets [1, 13, 17, 22]. Detailed results are reported in
terms of I/P-AUROC for each category.

*Corresponding author: lei.fan1@unsw.edu.au

1 # pretrained encoder:f_e, decoder:f_d, neck:f_n, projector:f_p
2 for x, raw_class in data_loader:
3 x_aug = aug(x) # data augmentation
4
5 # extracting multi-scale features
6 z_e = f_e.forward(x)
7 z_e_aug = f_e.forward(x_aug)
8
9 # projector

10 z_p = f_p.forward(z_e)
11 z_p_aug = f_p.forward(z_e_aug)
12
13 # bottle neck
14 z_n = f_n.forward(z_p)
15 z_n_aug = f_n.forward(z_p_aug)
16
17 # compute local CL
18 local_index = find_local_similarity_index(z_p, z_p_aug, label)
19 loss_lcl = local_cl(z_p, z_p_aug, local_index, label)
20
21 # compute global CL
22 loss_gcl = global_cl(z_n, z_n_aug, label)
23
24
25 z_d = f_d.forward(z_n) # features reconstruction for decoder
26
27 # compute knowledge distillation loss
28 loss_kd = cosine_similarity(z_e, z_d)
29
30 # compute total loss
31 loss = lambda_1 * loss_lcl + lambda_2 * loss_gcl + loss_kd
32
33 loss.backward()
34 update(f_d, f_n, f_p)

Code 1. Pseudo-code for local CL and global CL.

• Table II presents detailed results corresponding to Table
4, using various one-for-all training strategies to enhance
previously one-for-one models [2, 10, 19, 21] on three
datasets [1, 13, 22]. Data from these three datasets are
mixed for the multi-class setting, and results are reported
in terms of I-/P-AUROC for each category.

3. Implementation Details

3.1. Multi-class Models

We provided detailed experimental settings of various
multi-class models for Table 1 and Table 4. Typically, we
leveraged the official code for each method to evaluate the
models.
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Figure I. The detailed architecture of RD [2] with our LGC training strategy.

• UniAD [18]: The model was trained for 1000 epochs with
a batch size of 64. The input image size was set to 256×
256. The optimizer was AdamW [12], configured with
β1 = 0.9, β2 = 0.999, and a weight decay of 1 × 10−4.
The learning rate was set to 1×10−4, and the loss function
was FeatureMSELoss. The backbone network used was
EfficientNet-B4 [16].

• CRAD [9]: The model was trained for 50 epochs with
a batch size of 16, and the input image size was set to
224 × 224. The optimizer was AdamW [12], with a
learning rate of 0.1 for the grid parameters and 0.001 for
the network parameters. The learning rate scheduler was
StepLR, configured with a step size of 40 and a decay fac-
tor (γ) of 0.1. The loss function was FeatureMSELoss,
and the backbone was EfficientNet-B4 [16].

• OneNIP [3]: The model was trained for 1000 epochs with
a batch size of 8, and the input image size was set to 224×
224. The optimizer was AdamW [12], configured with
β1 = 0.9, β2 = 0.999, and a weight decay of 1 × 10−4.
The learning rate was set to 1 × 10−4, with a StepLR
scheduler using a step size of 800 and a decay factor (γ)
of 0.1. The loss function was FeatureMSELoss, and the
backbone was EfficientNet-B4 [16].

• DiAD [4]: The model was trained for 1000 epochs with a
batch size of 12, and the input image size was set to 256×
256. The optimizer was AdamW [12], with a learning rate
of 1 × 10−5. The loss function was DDPM [7], and the
backbone was Stable Diffusion 1.5 [14].

• MambaAD [5]: The model was trained for 1000 epochs
with a batch size of 16, and the input image size was set
to 256 × 256. The optimizer was AdamW [12], config-
ured with β1 = 0.9, β2 = 0.999, and a weight decay of
1 × 10−4. The learning rate was set to 0.005, and the
loss function was MSE Loss. The backbone used was
ResNet34 [6].

• ViTAD [20]: The model was trained for 100 epochs with
a batch size of 8, and the input image size was set to 256×
256. The optimizer was AdamW [12], configured with
β1 = 0.9, β2 = 0.999, and a weight decay of 1 × 10−4.
The learning rate was set to 0.0001.

3.2. Reconstruction-based Models

We provided detailed experimental settings of various
reconstruction-class models for Figure 1a and Table 4.
Typically, we leveraged the official code for each method
to evaluate the models.

• DeSTSeg [21]: It consists of two training stages. The
model was trained for 40 epochs with a batch size of 32
and an image size of 256× 256. The optimizer was SGD
with a learning rate of 0.4 and a momentum of 0.9. The
loss function was Cosine Similarity, and the backbone
network was ResNet18 [6]. Then, the training continued
for 160 epochs, but separate learning rates were applied:
0.1 for the backbone and 0.01 for the head. The loss func-
tions were L1 Loss and Focal Loss [15].

• DRAEM [19]: The model was trained for 200 epochs with
a batch size of 8 and an image size of 256× 256. The op-
timizer used is Adam [8], configured with β1 = 0.5 and
β2 = 0.999. The learning rate was set to 1 × 10−4. The
loss functions included L2 loss and SSIM loss for recon-
struction, and Focal Loss [15] for discrimination tasks.

• DMAD [10]: We employed the DDPM version. The
model was trained for 200 epochs with a batch size of 16
and an image size of 256×256. The optimizer was Adam
[8]. The learning rate was set to 0.005. The loss function
was based on Cosine Similarity, and the backbone was
WideResNet50 [6].

• CRD [11]: The model was trained for 200 epochs with
a batch size of 16, and the input size was set to 256 ×
256. The optimizer was Adam, configured with β1 = 0.9,



β2 = 0.999, and a weight decay of 0.95. The learning rate
was set to 0.005.
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Table I. Detailed results for Figure 1a. The evaluation of one-for-one models: RD [2] and DeSTSeg [21] through four one-for-all training
strategies: Sequential, Continual, Joint, and LGC. Results are reported as I/P-AUROC (%). The results obtained using separate models for
each category are presented in the One4one columns, while total average is computed based on four dataset averages.

Dataset RD [2] DeSTSeg [21]

One4one Sequential Continual Joint LGC(our) One4one Sequential Continual Joint LGC(our)

M
V

Te
c

A
D

[1
]

bottle 100/98.7 84.8/80.0 69.8/78.5 97.7/99.6 100/98.2 100/99.2 41.7/67.0 48.7/63.9 100.0/96.9 100.0/97.3
cable 95.0/97.4 57.0/61.2 61.3/60.5 82.3/94.7 99.5/98.2 97.8/97.3 46.2/60.9 47.7/53.0 93.9/93.7 95.8/95.1

capsule 96.3/98.7 67.0/94.6 65.2/93.5 97.6/85.3 97.2/96.8 97.0/99.1 58.1/87.7 55.9/83.5 91.5/93.5 96.0/91.9
carpet 98.9/98.9 83.0/96.5 90.0/97.5 99.0/99.2 98.9/99.0 98.9/96.1 85.0/81.5 88.0/58.4 99.0/95.9 98.4/97.4
grid 100/99.3 61.5/76.5 55.6/67.4 98.3/98.7 98.4/99.2 99.7/99.1 48.9/47.8 50.0/51.6 100.0/97.0 100.0/99.2

hazelnut 99.9/98.9 87.0/96.9 93.7/96.3 99.0/100.0 100/99.0 99.9/99.6 40.8/83.6 49.8/83.3 100.0/96.2 100.0/96.0
leather 100/99.4 58.9/92.6 68.0/95.5 99.4/100.0 100/99.5 100/99.7 60.9/56.2 74.7/52.9 100.0/99.4 100.0/99.7

metal nut 100/97.3 68.4/81.8 97.8/93.3 95.8/99.7 100/97.6 99.5/98.6 52.3/76.6 63.0/75.1 100.0/96.6 100.0/97.4
pill 96.6/98.2 98.1/97.8 90.7/95.2 96.9/91.8 98.4/98.9 97.2/98.7 95.9/89.6 95.9/96.0 92.4/95.1 94.2/93.6

screw 97.0/99.6 99.1/99.5 82.1/97.8 98.6/86.7 97.4/99.1 93.6/98.5 91.9/85.3 92.8/82.8 84.6/88.4 90.3/85.5
tile 99.3/95.6 72.9/77.4 82.1/79.4 95.3/99.6 99.8/97.1 100/98.0 82.7/55.2 69.1/50.7 100.0/98.6 100.0/98.4

transistor 96.7/92.5 91.1/99.1 86.9/99.1 99.0/99.4 99.6/95.5 98.5/89.1 92.8/97.7 98.9/98.8 90.0/98.4 94.4/98.7
troothbrush 99.5/99.1 94.7/86.5 94.3/86.5 85.5/94.1 100/99.2 99.9/99.3 98.7/82.6 99.0/85.6 98.2/75.2 96.0/79.4

wood 99.2/95.3 89.4/89.1 88.7/89.4 95.3/99.0 99.9/96.9 97.1/97.7 49.1/63.8 63.8/50.9 99.6/94.6 99.6/95.1
zipper 98.5/98.2 66.9/97.5 99.2/98.2 97.2/99.4 99.8/97.8 100/99.1 99.7/91.9 97.7/86.0 99.7/95.1 99.8/95.7

average 98.5/97.8 78.7/88.5 81.7/88.5 96.5/95.8 99.3/98.2 98.6/97.9 69.6/75.2 73.0/71.5 95.6/92.9 97.6/94.7

V
is

A
[2

2]

candle 95.1/98.9 59.0/91.5 71.4/91.8 92.5/99.2 97.6/99.1 96.2/89.6 51.9/65.9 47.4/82.6 88.5/85.2 94.2/91.4
capsules 89.4/99.6 47.8/81.3 47.2/80.2 83.8/99.4 86.0/99.4 86.9/96.5 60.8/64.0 38.8/70.5 85.9/95.0 92.4/97.1
cashew 96.7/95.5 95.5/91.5 95.8/93.1 94.3/92.3 96.9/94.2 94.2/96.3 84.1/89.8 90.6/81.3 90.3/90.9 92.2/91.2

chewinggum 98.1/98.8 97.4/98.7 97.7/98.9 96.4/98.8 97.9/97.5 98.2/97.4 97.2/97.7 97.7/98.9 96.1/98.4 97.4/98.7
fryum 95.5/96.5 96.9/96.7 97.1/96.8 95.9/96.9 95.9/97.3 88.6/89.2 93.4/74.2 95.2/71.9 91.4/67.9 94.6/75.7

macaroni1 93.7/99.6 54.7/95.3 47.3/95.3 95.8/99.8 98.3/99.4 94.9/97.5 48.8/73.6 44.7/84.9 94.1/90.2 93.9/96.2
macaroni2 87.2/99.5 41.0/94.2 48.4/94.6 87.7/99.6 85.8/99.3 80/92 56.2/87.8 50.4/92.0 73.7/76.0 74.2/83.5

pcb1 96.5/99.7 59.5/78.6 63.1/78.4 96.7/99.5 98.4/99.6 96/94.6 35.3/67.1 78.0/66.3 90.8/98.0 93.6/98.7
pcb2 97.3/98.9 66.2/82.8 62.3/83.4 97.8/98.0 96.9/98.8 96.5/95.4 48.1/70.6 51.3/82.3 93.2/97.6 95.1/97.2
pcb3 97.1/99.2 55.7/85.5 52.3/85.8 96.7/98.1 96.8/99.1 97.8/94.1 49.1/82.4 48.3/84.6 96.4/94.1 96.5/93.9
pcb4 99.8/98.4 28.0/77.5 29.0/77.8 100.0/97.8 100.0/98.6 99.5/92.4 68.6/82.2 76.6/80.6 99.1/92.8 99.2/95.0

pipe fryum 99.6/98.9 99.1/99.0 98.7/99.0 98.0/99.1 99.1/99.3 98.8/89.9 98.8/95.2 99.1/94.1 98.2/94.6 98.4/95.2

avgerage 95.5/98.6 66.7/89.4 67.5/89.6 93.6/98.2 95.9/98.5 93.9/93.7 66.0/79.2 68.2/82.5 91.5/90.1 92.8/91.6

B
TA

D
[1

3] 01 99.7/97.6 74.6/88.2 83.3/86.2 99.8/97.7 100.0/97.7 98.4/92.4 42.9/58.5 43.9/56.6 97.3/92.8 98.9/91.5
02 84.7/96.7 80.5/93.7 82.1/92.7 84.9/96.6 87.8/96.6 84/92.9 35.8/52.0 64.9/65.9 84.3/91.1 85.6/92.7
03 99.4/99.7 98.4/98.7 99.2/98.7 99.6/99.7 99.7/99.7 99.1/98.8 99.5/98.8 99.6/98.8 99.4/98.5 99.5/98.4

average 94.6/98.0 84.5/93.5 88.2/92.5 94.8/98.0 95.7/98.0 93.8/94.7 59.4/69.8 69.5/73.8 93.7/94.1 94.7/94.3

R
ea

l-
IA

D
[1

7]

audoijack 83.5/91.2 54.2/93.1 54.4/93.2 68.7/94.0 81.6/97.7 81.5/93.9 43.8/86.9 51.0/89.4 81.2/89.8 83.5/91.4
bottle cap 90.5/92.6 71.2/97.3 71.7/97.5 81.2/98.9 90.2/99.5 91.8/97.4 61.5/84.9 48.5/84.3 85.7/80.8 89.1/86.5

button battery 83.6/94.1 58.9/93.9 63.0/93.8 65.4/95.8 81.0/98.7 92.3/94.3 46.7/87.5 52.1/88.9 88.8/91.8 86.9/93.1
end cap 69.7/91.2 55.0/88.4 54.1/88.9 69.1/93.7 81.8/97.3 86.5/84.9 50.8/74.2 51.3/77.3 79.6/76.7 79.9/80.0
eraser 87.5/95.4 83.1/99.1 82.8/99.1 84.7/99.2 90.8/99.2 90.5/96.6 72.7/82.6 65.7/92.2 83.9/87.8 83.1/92.2

fire hood 92.5/96.9 75.4/97.6 75.5/97.6 78.6/98.1 81.0/98.5 83.3/93.5 64.0/77.9 71.6/89.7 82.4/90.8 82.5/91.6
mint 63.6/78.3 51.9/85.5 51.8/86.1 59.9/91.6 73.6/96.8 74.2/85.9 53.7/75.9 53.5/79.9 63.9/73.6 63.5/73.5

mounts 91.1/98.1 72.7/95.7 73.2/96.1 82.5/98.5 89.8/99.3 84.2/92.2 49.6/82.5 50.4/85.0 78.0/88.7 78.7/89.9
pcb 89.6/93.8 53.8/89.5 53.6/89.7 72.9/95.5 91.8/99.2 90.3/94.4 41.8/88.0 42.5/89.0 84.3/92.8 84.8/91.1

phone battery 90.4/94.7 53.4/72.0 54.8/72.8 77.6/79.8 92.8/98.9 87.4/93.8 56.1/73.8 55.7/76.9 84.8/76.8 86.8/79.5
plastic nut 82.6/93.2 63.5/91.2 62.1/91.2 73.0/96.3 87.8/99.4 91.4/96.7 52.2/69.6 48.4/71.6 84.0/88.8 85.0/88.8

plastic plug 90.9/97.2 46.0/89.6 45.8/91.0 73.2/98.0 88.7/98.7 86.4/89.5 56.5/81.9 58.3/79.8 78.8/77.7 80.2/75.8
porcelain doll 87.5/95.4 75.0/93.9 73.1/94.4 84.7/98.6 88.5/98.6 84.5/87.9 51.4/88.5 57.9/79.6 74.5/70.7 78.2/79.1

regulator 87.8/98.9 59.0/86.2 58.5/86.7 58.2/94.1 75.2/98.8 92/92.1 51.4/76.0 59.2/76.9 78.2/78.7 81.3/81.0
rolled strip base 94.9/96.1 71.2/95.6 73.9/96.1 93.7/99.3 99.4/99.6 98.6/97.6 52.7/86.1 49.9/88.5 97.5/95.9 96.2/95.7

sim card set 91.9/97.3 70.9/96.0 69.3/96.2 90.5/98.1 96.5/97.5 92.5/97.1 43.5/86.1 40.2/84.4 93.7/97.9 93.9/96.8
switch 91.8/93.7 53.4/82.7 53.5/82.9 76.1/89.8 93.8/98.6 93.7/97.9 50.5/77.4 48.7/74.0 90.8/90.9 91.0/88.7
tape 98.2/98.8 82.7/98.3 82.7/98.3 93.7/99.5 96.5/99.6 96.3/97.6 44.7/70.9 51.2/79.9 95.6/94.9 95.8/95.4

terminalblock 97.4/98.8 52.0/93.8 53.6/94.1 78.9/98.8 94.1/99.7 94.8/97.8 44.2/85.6 47.4/86.5 90.9/93.9 91.7/95.0
toothbrush 85.6/95.3 61.5/94.3 65.7/94.6 76.9/95.0 87.9/97.7 89.6/88.6 55.9/90.1 55.1/91.3 84.7/79.8 81.0/83.0

toy 86.6/93.9 75.2/95.9 74.3/96.0 60.2/90.8 82.6/96.9 84.2/79.3 76.0/63.2 76.6/69.6 76.9/75.7 76.5/76.6
toy brick 82.1/90.1 67.0/96.6 65.6/96.5 59.8/93.9 69.7/96.4 82.5/88.4 75.3/77.3 74.6/84.0 73.4/83.7 75.2/87.2

transistor1 93.5/96.5 94.3/99.3 94.9/99.3 82.3/97.8 97.0/99.5 96.3/97.8 94.6/88.9 92.5/91.7 89.7/90.8 91.5/92.1
u block 88.5/98.1 90.9/99.5 91.2/99.5 84.0/99.3 90.4/99.5 90.1/90.7 84.0/84.9 83.7/92.2 83.8/89.8 88.1/94.0

usb 88.5/98.0 88.2/98.6 88.8/98.6 71.3/95.2 94.2/99.4 91.6/97.5 91.4/92.5 90.4/94.3 88.8/92.8 90.1/95.4
usb adapter 78.8/91.3 74.5/95.0 74.7/94.9 65.2/92.9 80.5/96.1 78.1/93 82.4/80.0 80.3/85.7 83.1/86.8 82.7/84.7

vcpill 90.6/94.9 87.0/98.3 87.0/98.3 79.6/96.3 87.5/98.2 89.6/92.3 81.0/70.1 79.9/86.1 79.1/83.7 82.0/85.3
wooden beads 78.8/85.6 82.4/97.9 82.7/97.9 78.1/97.0 86.8/97.9 87/91.3 85.0/79.9 84.0/90.0 83.5/86.8 84.8/90.0

woodstick 89.4/94.9 79.6/98.0 78.6/97.9 76.4/96.9 77.9/97.9 87.4/95.3 82.9/90.3 81.4/91.5 82.9/92.8 83.2/92.0
zipper 99.6/98.1 97.4/99.2 97.6/99.2 97.6/98.8 99.1/99.3 97.9/84.7 96.5/73.7 97.0/79.9 97.4/87.9 96.2/90.8

average 87.6/94.4 70.0/93.7 70.3/93.9 76.4/95.7 87.6/98.5 88.9/92.5 63.1/80.9 63.3/84.3 82.3/85.8 84.8/87.9

total average 94.0/97.2 74.9/91.3 76.9/91.4 90.3/96.9 94.6/98.3 93.8/94.7 64.5/76.3 68.5/78.0 90.7/90.9 92.5/92.3



Table II. The detailed results for Table 4. The evaluation of one-for-one models: DRAEM [19], DMAD [10], RD [2] and DeSTSeg [21]
through two one-for-all training strategies: Joint and LGC. Results are reported as I/P-AUROC (%). The results obtained using separate
models for each category are presented in the One4one columns, while total average is computed based on all categories. To enhance
clarity, we omitted the PRO metric which can be found in detail on the project homepage.

Dataset DRAEM [19] DMAD [10] RD [2] DeSTSeg [21]

One4one Joint LGC(our) One4one Joint LGC(our) One4one Joint LGC(our) One4one Joint LGC(our)

M
V

Te
c

A
D

[1
]

bottle 99.2/99.1 99.1/85.0 98.1/96.1 100/98.9 98.6/97.6 99.7/98.3 98.6/99.0 98.6/99.0 98.4/99.0 100/99.2 99.9/92.3 99.9/96.0
cable 91.8/94.7 59.4/71.7 64.1/68.5 99.1/98.1 78.8/83.3 95.4/95.7 98.9/97.2 98.9/97.2 100.0/98.4 97.8/97.3 88.2/76.7 94.2/86.8

capsule 98.5/94.3 43.1/55.9 61.1/91.3 98.9/98.3 77.1/97.3 91.1/98.6 76.0/73.3 76.0/73.3 96.7/96.6 97.0/99.1 69.8/60.9 86.2/80.1
carpet 97.0/95.5 95.1/95.5 97.4/90.6 100/99.1 91.0/97.4 98.8/99.1 88.6/98.4 88.6/98.4 98.8/99.0 98.9/96.1 97.7/96.3 95.7/96.4
grid 99.9/99.7 92.0/93.5 97.8/95.7 100/99.2 61.8/80.4 94.1/98.2 94.4/98.9 94.4/98.9 99.3/99.1 99.7/99.1 97.9/94.2 99.2/97.4

hazelnut 100/99.7 91.9/93.5 98.8/94.9 100/99.1 99.8/97.9 100.0/99.0 99.5/98.5 99.5/98.5 100.0/99.0 99.9/99.6 100.0/87.6 100.0/97.6
leather 100/98.6 99.9/96.2 99.0/96.9 100/99.5 100.0/99.3 100.0/99.2 99.9/99.4 99.9/99.4 100.0/99.1 100/99.7 95.1/98.2 100.0/99.6

metal nut 98.7/99.5 63.6/76.6 79.6/83.4 100/97.7 93.0/94.1 99.4/95.6 98.9/89.7 98.9/89.7 100.0/96.8 99.5/98.6 99.3/80.0 100.0/79.4
pill 98.9/97.6 53.8/77.4 86.2/85.4 97.3/98.7 83.3/96.2 95.4/97.7 95.2/96.4 95.2/96.4 98.0/98.1 97.2/98.7 81.7/65.2 88.9/89.4

screw 93.9/98.1 77.7/87.3 82.6/95.9 100/99.6 57.6/95.5 89.5/99.2 93.0/99.0 93.0/99.0 96.1/99.4 93.6/98.5 82.3/62.5 78.5/70.6
tile 99.6/99.2 92.9/87.6 98.2/98.9 100/96.0 93.1/92.7 99.9/96.5 97.3/94.3 97.3/94.3 100.0/96.2 100/98.0 98.3/95.0 99.6/97.5

transistor 93.1/90.9 82.5/92.7 90.0/92.6 98.7/95.4 91.9/97.2 97.2/99.0 100.0/98.7 100.0/98.7 97.8/99.1 98.5/89.1 73.6/92.1 83.3/95.7
troothbrush 100/98.1 76.5/67.8 79.6/78.9 100/99.4 80.4/83.6 95.7/89.7 86.8/81.5 86.8/81.5 98.7/93.4 99.9/99.3 97.1/71.9 91.8/70.8

wood 99.1/96.4 99.9/89.5 99.1/89.9 100/95.5 97.8/93.8 98.7/94.4 99.5/95.2 99.5/95.2 99.2/94.9 97.1/97.7 97.1/92.6 99.7/94.6
zipper 100/98.8 93.6/87.3 96.8/82.6 99.6/98.3 89.3/97.4 99.4/98.0 99.4/98.6 99.4/98.6 99.6/98.3 100/99.1 98.4/91.2 99.5/87.5

V
is

A
[2

2]

candle 92.8/86.3 78.1/72.0 86.0/97.0 88.7/97.4 81.1/97.1 91.8/99.2 94.2/99.1 94.2/99.1 96.9/99.7 96.2/89.6 85.4/70.9 87.7/80.9
capsules 90.5/98.1 86.6/91.5 87.2/94.1 75.4/99.0 62.3/95.7 82.6/99.4 89.0/98.8 89.0/98.8 92.9/99.1 86.9/96.5 79.8/90.5 84.2/94.8
cashew 97.1/81.6 95.5/62.4 96.7/91.5 91.8/97.9 84.6/94.4 88.7/93.7 81.7/99.1 81.7/99.1 86.1/99.4 94.2/96.3 84.5/77.6 86.1/87.2

chewinggum 97.9/98.4 90.7/86.9 93.9/96.7 96.9/98.9 79.7/98.2 93.3/97.9 88.9/84.5 88.9/84.5 95.1/95.4 98.2/97.4 95.6/97.6 96.0/98.4
fryum 95.4/93.8 78.3/78.0 85.9/84.3 95.6/96.4 82.5/96.0 95.2/96.3 90.0/96.6 90.0/96.6 97.6/98.5 88.6/89.2 91.7/69.4 90.2/73.6

macaroni1 86.2/97.7 70.5/82.0 81.9/59.1 89.2/99.2 83.5/98.4 90.7/99.4 94.2/96.6 94.2/96.6 94.6/97.1 94.9/97.5 91.7/75.8 91.4/89.0
macaroni2 85.4/96.4 65.2/91.3 45.6/90.7 79.4/99.1 53.6/97.4 79.3/99.3 94.6/99.7 94.6/99.7 93.6/99.7 80/92 63.2/68.0 71.3/74.1

pcb1 92.4/93.5 68.3/85.4 91.4/95.1 98.4/99.4 55.8/98.0 95.1/99.5 82.2/99.5 82.2/99.5 83.9/99.4 96/94.6 88.9/95.9 88.7/97.9
pcb2 95.3/96.0 77.2/89.3 93.2/97.4 97.2/98.8 93.7/97.0 94.8/98.5 97.1/97.6 97.1/97.6 97.2/98.9 96.5/95.4 91.0/92.7 92.2/97.6
pcb3 94.0/89.7 88.1/87.3 92.8/97.5 98.4/98.7 58.6/96.3 95.9/98.9 95.0/97.6 95.0/97.6 95.3/98.8 97.8/94.1 92.5/89.8 94.6/92.4
pcb4 96.5/88.0 97.3/92.6 98.4/96.3 99.9/96.1 98.9/94.5 99.8/98.6 99.8/97.1 99.8/97.1 100.0/98.3 99.5/92.4 98.8/88.4 98.6/95.9

pipe fryum 93.1/83.2 81.9/63.3 92.5/89.6 97.4/99.0 86.5/99.2 98.7/99.0 96.9/98.9 96.9/98.9 99.8/99.1 98.8/89.9 96.1/84.1 96.5/87.2

B
TA

D
[1

3] 01 97.4/75.4 95.1/91.8 94.9/89.8 99.9/97.6 99.8/97.0 100.0/97.5 16.0/94.6 16.0/94.6 99.9/97.8 98.4/92.4 92.8/86.7 97.9/88.8
02 80.3/82.1 73.1/76.1 75.9/90.4 86.4/95.2 76.0/96.0 87.9/95.7 84.4/97.0 84.4/97.0 87.1/96.5 84/92.9 85.7/91.3 86.2/88.5
03 99.5/81 75.7/57.0 97.2/81.3 99.6/99.6 98.8/98.8 99.6/99.7 99.6/99.6 99.6/99.6 99.3/99.7 99.1/98.8 98.8/96.5 99.3/96.5

total average 95.5/93.4 81.4/82.1 88.1/89.7 96.3/98.2 82.9/95.3 94.9/97.7 96.9/98.2 91.0/95.9 96.7/98.1 96.3/95.9 90.4/84.4 92.6/89.4
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